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1 Introduction

Many problems in physics require going beyond standard Feynman diagrams and S-matrices

calculations. In non-equilibrium settings, interactions generally take place in a short time

interval and cannot be switched adiabatically as is done e.g. in the LSZ reduction formula

for scattering experiments. An asymptotic state might also be out of grasp due to an

inherent instability of the system. The initial state is known though, so that 〈in | in〉 matrix

elements still provide valuable data. This is at the core of the Schwinger-Keldysh method

where the amplitudes are calculated along a path extended in the complex time plane [1, 2].

While in non-equilibrium statistical physics the response of a system to a disturbance can

often be reduced to real-time Green functions for thermal equilibrium systems, the method

of Keldysh Green functions was historically first developed to directly tackle systems out

of equilibrium. Equilibrium and non-equilibrium statistical physics are actually formally

equivalent when one introduces a contour-ordering to replace the usual time-ordering. See

section 2.1.3 of [2] and references therein for a more detailed discussion. Non-equilibrium

statistical physics is concerned with correlors of the type 〈O(t)〉 = Tr [ρO(t)] for t > ti,

where ρ denotes the distribution for an equilibrium hamiltonian but O(t) is an operator

in a Heisenberg representation with respect to an hamiltonian with an interactions part.

Here, ti refers to an initial time. The standard procedure for obtaining a non-equilibrium

state is to consider a state which until ti was in equilibrium with a reservoir and was thus

prepared in some initial conditions. At t > ti the state is disconnected from the reservoir

and interactions are switched on. In fact, unless for fleeting properties of a system out of

equilibrium, the dependence on the initial state is rapidly lost due to interactions and the

distribution ρ is arbitrary in this case.

In [3] a prescription for computing Keldysh Green functions in the AdS/CFT corre-

spondence was found and later implemented in [4] for computing transverse and longitu-

dinal momentum broadening for a heavy quark, from variations of the underlying Wilson

line. Recent works [5–7] explore the Langevin description for a heavy quark from the
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gauge-string duality. The present paper aims at generalizing this to an expanding plasma.

This is a non-equilibrium situation. In particular the medium is characterized by a local

temperature whose proper-time dependence obeys a scaling law first devised by Bjorken [8].

Actually, the recipe of [3] for computing real-time correlators in AdS/CFT was later justi-

fied in a series of papers by Skenderis and van Rees [9–11]. See [11] for a review and further

explanations on how their results reduce to the ingoing boundary condition for bulk fields

of [3] when the sources are set equal on both boundaries of the Penrose diagrams used in

such calculations. Besides, their work is amenable to all sorts of initial states and ensembles

by switching additional sources in the Euclidean segments of the devised construction.

The authors of [12] studied horizon formation and thermalization in a non-Abelian

plasma resulting from turning on background fields, described by gravitational waves. It

would be very interesting to derive transport coefficients such as momentum broadening

coefficients for a hard probe from the numerical analysis presented in [12] but how this

might be achieved is obscured by a lack of hindsight for an evolution out of equilibrium at

strong coupling in AdS/CFT. The approach presented in the present paper relies on the

leading-order expansion at large times to the Janik-Peschanski dual [13, 14] to a Bjorken

flow and it allows for explicit results.

The next section first reviews the work of Kim, Sin and Zahed [15] and explains how to

derive, for a quark at rest in the expanding plasma comoving frame, a Langevin equation.

The correlators of the random forces thereof are computed. Section 3 is concerned with a

fast quark moving transversally in a strongly coupled N = 4 supersymmetric Yang-Mills

plasma experiencing Bjorken flow. The gravity dual corresponds to a string trailing in the

Janik-Peschanski background. The dispersions relations, energy loss parameter and mo-

mentum broadening coefficients are derived. They exhibit the expected scaling behaviour

for the temperature, with no other dependence on the initial thermalization temperature.

The method used to compute those quantities in a non-equilibrium, expanding plasma

relies on a coordinate change and a particular Fourier-like mode-expansion to map the

problem to a situation where the background has a fixed, global temperature.

2 Transverse and rapidity fluctuations in an expanding plasma and the

Langevin description

In [13, 14] the gravity dual to a Bjorken flow [8] was derived in a τ−2/3 expansion to the

bulk metric in Fefferman-Graham coordinates. The proper-time of an expanding plasma

τ is related, along with the rapidity y, to the physical laboratory time tlab and direction

of expansion x3 as tlab = cosh(y)τ , x3 = sinh(y)τ . Those parameters are convenient for

describing the hydrodynamic regime which takes over after a scenario where typically at

proper time τ = 0 two gold nuclei collide at high enough energy that their subsequent evo-

lution leads to a quark-gluon plasma. At proper time τ0 the resulting plasma is thermalized

and its properties are described by Bjorken’s hydrodynamic model [8]. The plasma expands

along the collision axis. Most useful to the remainder of this paper is the scaling law

T 3τα = const, (2.1)

– 2 –
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where α = 3v2
S . From conformal invariance the sound velocity vS is set to 1/

√
3 and then

α = 1. In this paper, especially in section 3, it is assumed that the plasma expands for

a sufficiently long period of time that the quark probes a large enough distance L of the

quark-gluon plasma. No other possible phase will be considered.

The leading order result in the JP expansion reads

ds2 =
R2

z2
Hz2

[

−(1 − w4)2

(1 + w4)
dτ2 + (1 + w4)

[

τ2dy2 + dx2
⊥
]

+ z2
Hdz2

]

, (2.2)

with w = z
(τ/τ0)1/3 ǫ1/4, ǫ = (πT0)

4/4 and where T0 = 1
πzH

is the Hawking temperature.

The picture that emerges is that of a black hole whose horizon is moving away from

the boundary. The coordinate change, t
t0

= 3
2( τ

τ0
)2/3, u(t, z) = 2w2

1+w4 — after discarding

the non-diagonal components which ensue, as they are subleading in the τ expansion —

yields [15]

ds2 =
R2

z2
Hu

(

−fdt2 +
4t2

9
dy2 +

3t0
2t

dx2
⊥ + z2

H

du2

4uf

)

, (2.3)

where f(u) = 1 − u2.

The above form of the metric proves convenient as it converts a time-dependent prob-

lem into a setting where the usual recipe for extracting dual gauge theory correlators from

fields in a AdS-Schwarzschild black hole background applies.

The time-dependent transverse and rapidity components of the metric are accounted

for by Fourier-Hankel transformations. The study of transverse string fluctuations was

carried out in [15] where the corresponding momentum broadening coefficient and diffusion

coefficients were found for a heavy quark probe at rest in the plasma co-moving frame.

The remainder of this section generalizes this to the rapidity fluctuations as well. More-

over, the Kubo-Martin-Schwinger formula relating the retarded and symmetric correlators

is derived. The construction of Schwinger-Keldysh propagators in AdS/CFT first devised

in [3] and later justified in [9–11] thus holds. This then ensures for the existence of a

Langevin description — which was merely postulated in [15].

The Nambu-Goto action

SNG = − 1

2πα′

∫

d2σ
√−g, gαβ = Gµν∂αXµ∂βXν , (2.4)

can be expanded to quadratic order in the transverse and rapidity fluctuations δX1,2 =

ξ1,2(t, u) and δy(t, u) in the background specified by the target-space metric components

Gµν of (2.3). This provides

SNG = −
√

λT0

4

∫

dt du
1

u3/2

+

√
λT0

8

∫

dt du

(

3t0
2t

)

∑

i=1,2

[

(∂tξ
i)2

u3/2f(u)
− (2πT0)

2 f(u)

u1/2
(∂uξi)2

]

+

√
λT0

8

∫

dt du

(

4t2

9

)[

(∂tδy)2

u3/2f(u)
− (2πT0)

2 f(u)

u1/2
(∂uδy)2

]

. (2.5)
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Here λ = R2/α′ ≫ 1, so that string loop corrections are negligible at this order and

computations at the two-derivatives supergravity level are reliable. The action (2.5) is the

same as in a static black hole background apart from overall time-dependent factors. The

equations of motion are
[

∂2
t − 1

t
∂t + 2π2T 2

0 f(u)(1 + 3u2)∂u − (2πT0)
2uf(u)2∂2

u

]

ξi = 0, i = 1, 2 (2.6)

(2.7)

along with
[

∂2
t +

2

t
∂t + 2π2T 2

0 f(u)(1 + 3u2)∂u − (2πT0)
2uf(u)2∂2

u

]

δy = 0. (2.8)

Expanding in a basis defined by Hankel functions















ξi(t, u) =

∫ ∞

−∞

dω

2π

√

iπω

2
tH

(2)
1 (ωt)Ψω(u)ξ̃0(ω);

δy(t, u) =

∫ ∞

∞

√

iπω

2
(
−i√

t
)H

(2)
1/2(ωt)Φω(u) ˜δy0(ω),

(2.9)

yields

[

∂2
u − 3u2 + 1

2uf(u)
∂u +

w
2

4uf(u)2

]

(

Ψω

Φω

)

(u) = 0, w =
ω

πT0
, (2.10)

where Ψω and Φω are normalized to unity at u = 0. Inserting (2.9) into (2.5), using the

equations of motion and integrating by parts gives

Sbndry =
3π2

√
λT 3

0 t0
4

∑

i=1,2

∫

dt
f(u)√

ut
ξi∂uξi(t, u) |u=1

u=0

+
2π2

√
λT 3

0

9

∫

dt t2
f(u)√

u
δy∂uδy(t, u) |u=1

u=0, (2.11)

One then appeals to the approximate completeness relation

− 1

4

∫ ∞

−∞
dt tH(2)

ν (ωt)H(2)
ν (−ω′t) ≃ 1

ω
δ(ω − ω′), (2.12)

which stems from the exact relation
∫∞
0 dt tJν(ωt)Jν(ω′t) = 1

ωδ(ω−ω′) for Bessel functions.

One can argue that (2.12) is a fair approximation given that the dominant contributions

in the integrals come from the late time region and that the Janik-Peschanski metric is

defined as a large τ inverse expansion

As a result, the following expressions for the retarded Green functions hold






















GR,⊥(ω) =

[

−3π2
√

λT 3
0 t0

2

]

[

f(u)√
u

Ψ−ω(u)∂uΨω(u)

]

u=0

;

GR,δy(ω) =

[

4π2
√

λT 3
0

9

]

[

f(u)√
u

Φ−ω(u)∂uΦω(u)

]

u=0

.

(2.13)
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In the following, it is checked explicitly that the symmetrized Wightman functions Gsym(ω)

are related to the corresponding retarded correlators by a Kubo-Martin-Schwinger (KMS)

relation [2, 16]

Gsym(ω) = − coth

(

ω

2T0

)

Im GR(ω). (2.14)

It involves the temperature T0, which is the initial, thermalization temperature in the orig-

inal Bjorken frame. The following illustrates how the proper-time dependent temperature

appears in the 2-point functions for this frame, from the Green functions computed in the

{t − u} system.

For this purpose let us follow the usual prescription as it appears in [3, 4, 6, 7, 17, 18]

and expand a general solution in the right and left quadrants of the black hole back-

ground (2.3), whose Kruskal diagram is the same as for a AdS-Schwarzschild black hole:

{

ΥR, ω(u) = A(ω)ΨH
ω, in(u) + B(ω)ΨH

ω, out(u);

ΥL, ω(u) = C(ω)ΨH
ω, in(u) + D(ω)ΨH

ω, out(u),
(2.15)

Υω(u) denoting collectively Ψω(u) or Φω(u) from (2.10)

ΨH
ω, in(u) and ΨH

ω, out(u) form a basis of two independent wave-functions whose expan-

sion near the horizon at u = 1 is, up to O(ω2) terms







ΨH
ω, in = (1 − u2)−i w

4

[

1 +
iw

8
(π − 4 tan−1(

√
u) − 6 log(2) + 2 log(1 + u)(1 +

√
u)2)

]

;

ΨH
ω, out = ΨH∗

ω, in.

(2.16)

The Kruskal coordinates are cast in the form U = − 1
2πT0

e−2πT0(t−r∗), V = 1
2πT0

e2πT0(t+r∗).

r∗ = 1
4πT0

[

1 + log( 1
u − 1)

]

denotes the tortoise coordinate.

From



































(−U)
iw

2πT0 ≃ (1 − u)iw/4e−iωt

(

1

2πT0

)iw/2

e−iw/4

[

1 + (1 − u)
iw

2

]

;

(V )
− iw

2πT0 ≃ (1 − u)−iw/4e−iωt

(

1

2πT0

)−iw/2

e−iw/4

[

1 − (1 − u)
iw

2

]

;

H
(2)
ν (ωt) ≃

√

2

πωt
e−i(ωt−πν/2−π/4), | ωt |→ ∞,

(2.17)

near the horizon, one obtains the following behaviour for the modes satisfying the equations

of motion:























√

iπω

2
tH

(2)
1 (ωt)ΨH

ω, in(u ≃ 1) ≃
√

log

(−V

U

)

e−
iw
2

log(V ) ;

√

iπω

2
tH

(2)
1 (ωt)ΨH

ω, out(u ≃ 1) ≃
√

log

(−V

U

)

e−
iw
2

log(−U),

(2.18)
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and


















√

iπω

2

(−i√
t

)

H
(2)
1 (ωt)ΨH

ω, in(u ≃ 1) ≃ 1

log(−V
U )

e−
iw
2

log(V ) ;
√

iπω

2

(−i√
t

)

H
(2)
1 (ωt)ΨH

ω, out(u ≃ 1) ≃ 1

log(−V
U )

e−
iw
2

log(−U),

(2.19)

The conditions at the horizon used in [3] amount to the analyticity of the infalling modes

in the lower V complex plane (which guarantees that such modes carry positive energy).

Similarly, they guarantee that the outgoing solutions are of negative energy, hence analytic

in the upper U plane. A full justification of this recipe and a generalization to a broader

framework for computing real-time correlators in the gauge/gravity correspondence appears

in [9–11]. One can generalize and extend the transformation from the right quadrant (U <

0, V > 0) to the left quadrant (U > 0, V < 0) to V →| V | e−iθ, −U →| U | e−i(2π−θ) [6],

where θ was naturally set to π in [3]. In the case at hands, θ = 0 mod [π] is most convenient.

θ = 0 leads to a treatment in terms of retarded and advanced wave-functions Υa = ΥR−ΥL,

Υr = ΥR+ΥL
2 . The current problem is thus amenable to the same discussion as in [6, 7].

Following the analysis expounded in those references,

(

C

D

)

(ω) =

(

1 0

0 eω/T0

)(

A

B

)

(ω), (2.20)

and from here on the recipe for obtaining a Langevin equation applies:

iSbndry,⊥ = − i

∫

dω

2π
xh

a,⊥(−ω)
[

Gh
R,⊥(ω)

]

xh
r,⊥(ω,⊥)

− 1

2

∫

dω

2π
xh

a,⊥(−ω) [Gsym,⊥(ω)] xh
a,⊥(ω), (2.21)

and similarly for the rapidity sector with — e.g. for transverse fluctuations –

Gh
R,⊥(ω) = −3π

√
λT 2

0 t0
4

iω,

= −iωη⊥, (2.22)

and

Gh
sym,⊥(ω) =

3π2
√

λT 3
0 it0

2

(1 + 2n(ω))

2

[

f(u)√
u

∂u(ΨH
ω, in − ΨH

ω, out)

]

u=1

,

= −(1 + 2n(ω))Im GR,⊥(ω). (2.23)

n(ω) denotes the thermal distribution at temperature T0. In the original Bjorken vari-

able, this is the temperature at the thermalization time τ0. In the Bjorken frame, the

temperature subsequently decreases according to the scaling law (2.1). Yet, the above

analysis was performed at a single temperature T0. How should one possibly expect to

gain knowledge of 2-point functions in an expanding plasma ? The change of coordinates

that we made allows for an analysis where the plasma local temperature is kept at T0.

– 6 –
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The time dependence is indeed transferred only to the transverse and velocity coordinates

components of the metric, while the time and radial components take on the same form

as for an AdS-Schwarzschild black hole with temperature T0. In the following, we show

how the physical temperature T (τ) at proper-time τ makes its way in the coefficients of

the Langevin description.

The bulk picture of Brownian motion [6, 7] leads to a stochastic equation with random

noise ξ for the horizon endpoint of the string:
{

T⊥(uh)∂uxr,⊥(ω, u) + ξh
⊥(ω) = −iωη⊥xh

r,⊥(ω),

〈ξh
⊥(−ω)ξh

⊥(ω)〉 = η⊥ω[1 + 2n(ω)].
(2.24)

T⊥(u) =
3π2

√
λT 3

0
t0

2
1−u2√

u
is the local tension in the string. In the long time limit where

the relevant scales are large with respect to the heavy quark relaxation time, this term is

negligible as the string appears straight and the bulk has no effect on the stretched horizon.

Therefore the equation of motion for the horizon endpoint is

dxh
⊥

dt
≃ ξh

η⊥
(2.25)

and similarly for the boundary endpoint. Going from (2.24) to (2.25) requires the com-

pleteness relation. Also, terms of order O(1/
√

t) were discarded in d(η⊥
√

txh
⊥)/dt.

Besides, using the inverse of (2.12),

〈ξh
⊥(t1)ξ

h
⊥(t2)〉 = −1

4

∫ ∞

−∞
dωωH

(2)
1 (ωt1)H

(2)
1 (−ωt2)〈ξh

⊥(ω)ξh
⊥(−ω)〉

≃ 3π
√

λT 3
0 t0

2

1

(t1 + t2)/2
δ(t1 − t2),

= K⊥(t1, t2). (2.26)

Use has been made of t1,2 ≫ 1, as appropriate from the JP asymptotic condition. Besides,
√

t1t2 =
√

T − s2

4 , where T = t1+t2
2 , s = t1 − t2, and the conditions T ≫ 1, s ≪ 1 were

then invoked.

In a Langevin description which gives the dynamics of the heavy quark propagating in

the expanding plasma

dpi

dt
= FL

i + F T
i , (2.27)

〈FL
i (t1)F

L
j (t2)〉 = p̂ip̂jKL(t1, t2), (2.28)

〈F T
i (t1)F

T
j (t2)〉 = (δij − p̂ip̂j)KT (t1, t2). (2.29)

Switching to the proper-time coordinate, each force component comes with an additional

factor of
√

3t0/2t: FL,T
i (τ1,2) =

√

3t0
2t1,2

FL,T
i (t(τ1,2)).

Taking care of the Dirac distribution transformation law under coordinate change, this

yields, e.g. for the transverse force,

〈F T
i (τ1)F

T
j (τ2)〉 =

(

3t0
2t1

)2

π
√

λT 3
0

(

τ1

τ0

)1/3

δ(τ1 − τ2)(δij − p̂ip̂j)

= π
√

λT 3(τ1)δ(τ1 − τ2)(δij − p̂ip̂j). (2.30)

– 7 –
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In the Bjorken frame the force correlator thus exhibits a simple scaling law on the tem-

perature with no explicit dependence on the initial temperature T0. The initial condition

on the temperature is then partially washed out. As a landmark of adiabatic evolution,

though, it is still hidden in the scaling law for the local temperature.

3 Trailing string in the BF background

We now turn to the case of a heavy quark probe moving transversally at some average

velocity through an expanding strongly-coupled N = 4 SYM plasma. Suppose that after

the hydrodynamic regime has settled, a heavy quark is created among the debris of the

collision and starts propagating through the thermalized state of matter with vanishing

longitudinal momentum, which means it lies at rapidity y = 0. Hence, the proper time

parameter τ in the comoving frame measures the physical time elapsed since the probe

departed. The quark will hit subsequent layers of matter at different cooling temperatures

and densities. In particular, the temperature is described by the scaling law (2.1).

In the context of weakly-coupled quantum chromodynamics, the authors of [19] studied

the energy loss and momentum broadening for such a probe created either inside or coming

from outside of such an expanding plasma. Their analysis relied on perturbation theory.

From q̂(τ) = ρ(τ)
∫

d2~q⊥~q2
⊥

dσ
d2~q⊥

, with ρ(τ) the position-dependent density of the medium,

which entails q̂(τ) = q̂(τ0)(
τ0
τ )α, they found an increase in the rate of energy loss compared

to their results in a static medium [19]:

− dE

dx⊥
=

2

2 − α

(

− dE

dx⊥

)

|static
, (3.1)

in case the quark is produced inside the medium. It should also be noted that theirs is a

finite-extent plasma, unlike the one described by the JP dual that is investigated below.

As pointed out in [20], an expanding medium amounts to an effective transport coef-

ficient q̂eff(L) which would be equivalent to a jet-quenching coefficient in a static plasma:

q̂eff(L) =
2

L2

∫ L

τ0

dτ (τ − τ0) q̂(τ)

≃ 2

2 − α
q̂(L), (3.2)

as the limit τ0 → 0 is taken in much of these studies. The coefficient q̂(L) is evaluated at

the temperature T (L) probed by the quark after it has travelled a distance L through the

cooling medium.

We would like to learn what happens at strong coupling, despite the difference in the

mechanism for energy loss from the one that prevails at weak coupling, in a static plasma,

as emphasized, e.g., in [21]. The discussion focuses on the rate of energy loss and, in the

final part, on the momentum broadening coefficients.

The starting point is the gravitational dual to the Bjorken flow, the JP metric [13, 14].

One would like to check if a similar enhancement exists and, besides if independence of the
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transport and momentum broadening coefficients on the thermalization temperature T0,

which was indeed qualified as ‘remarkable’ by [19], is observed.

It would seem appropriate to start with the ansatz X1(τ, z) = vτ + ζ(z) (∗) for the

trajectory of the string and its quark boundary endpoint, so as to gather information on the

drag force and momentum broadening coefficients experienced by a heavy quark moving a

velocity v in the plasma proper frame at strong coupling. For convenience, we defined z

as
√

u. It should not be mistaken with the z-variable from the starting JP metric. In the

following, the background is provided by the tamed form of the metric (2.3). The initial

JP metric is far less pliable to tractable computations.

However consider instead a different ansatz

X1(t, z) = vt + ζ(z), (3.3)

and momentarily defer a discussion on the difficulties one would have run into, had one

chosen to work with the proper-time parameter directly. The ansatz (3.3) yields

√−g =
R2

z2
Hz2

√

−g̃,
√

−g̃ =

√

z2
H

(

1 − 3t0
2t

v2

f(z)

)

+
3t0
2t

f(z)(∂zζ)2, (3.4)

and the equation of motion

3t0
2t

f

z2
∂zζ = C

√

−g̃. (3.5)

Inserting this implicit expression for the derivative of ζ and solving for
√−g gives

(
√

−g̃)2 = z2
H

1 − 3t0
2t v2 − z4

1 −
[

1 + C2/3t0
2t

]

z4
. (3.6)

In order to ensure that (−g) stays positive everywhere on a string that extends from the

horizon to the boundary, both numerator and denominator must change sign at the same

point (note that t starts at t0). Hence

C = ±
3t0
2t v

√

1 − 3t0
2t v2

, (3.7)

and ∂zζ = ±vzH
z2

f , which is integrated to

X1(t, z) = X1
0 (t, z) = x1

0 + vt ∓ vzH

2

[

tan−1(z) + log

√

1 − z

1 + z

]

. (3.8)

In the subsequent discussion the + sign in (3.8) is always assumed. Starting with (∗)
would result in X1(τ, z) = x1

0 + vτ ∓ vzH
2 ( τ

τ0
)1/3

[

tan−1(z) + log
√

1−z
1+z

]

. An extra proper

time dependence is forced on ζ(z) from the value taken by C in the process. This is in

contradiction with (∗). Note that having to work with (3.8) instead of a linear motion

in the plasma proper frame raises no problem if one accepts to momentarily set aside a

picture of the quark in Bjorken variables ; actually the following discussion establishes how

a trajectory for a quark moving with constant velocity with respect to the proper-time

variable appears.
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3.1 Dispersion relations and drag force

This section investigates the way the dispersion relations and the drag acting on the quark

are modified by the changing properties of the plasma. A similar analysis was performed

for a string trawling an AdS-Schwarzschild black hole in [22].

It is shown that the dispersions relations take on their usual expressions only after a

change of reference frame to the starting Bjorken variables is performed. This then leads

to the identification of a term responsible for energy loss.

The general expressions for the canonical momentum densities to an open string in a

background specified by Gµν are

π0
µ = − 1

2πα′Gµν
(Ẋ.X

′

)(Xν)
′ − (X

′

)2(Ẋν)√−g
, (3.9)

π1
µ = − 1

2πα′Gµν
(Ẋ.X

′

)(Ẋν) − (Ẋ)2(Xν)
′

√−g
. (3.10)

For a string trailing in a JP background massaged to the metric (2.3) this reduces to



























π0
t = −

√
λT0

2

1
√

1 − 3t0
2t v2

[

1 − (1 − 3t0
2t v2)z4

]

z2f(z)
,

π0
x1 =

√
λT0

2

3t0
2t v

√

1 − 3t0
2t v2

1

z2f(z)
,

(3.11)



























π1
t =

π
√

λT 2
0

2

3t0
2t v2

√

1 − 3t0
2t v2

=
π
√

λT (τ)2

2

v2

√

1 − 3t0
2t v2

,

π1
x1 =

π
√

λT (τ)2

2

v
√

1 − 3t0
2t v2

.

(3.12)

Integrating along the string, the resulting total energy and momentum, E = −
∫

dσπ0
t ,

p =
∫

dσπ0
x1 , read

E =

√
λT0

2

1
√

1 − 3t0
2t v2

[

z−1
m − z−1

h +
3t0
2t

v2Λ(zh)

]

, (3.13)

p =

√
λT0

2

3t0
2t v

√

1 − 3t0
2t v2

[

z−1
m − z−1

h + Λ(zh)
]

, (3.14)

where

Λ(zh) =
1

4

[

2 tan−1(zm) − 2 tan−1(zh) + log
(1 − zm)(1 + zh)

(1 + zm)(1 − zh)

]

. (3.15)

This compares with eq. (3.21) in [22].

The total energy and momentum diverge due to their contributions close to the horizon,

i.e. as the cut-off zh → 1.
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The total energy exhibits a contribution γ(t)Estraight = 1/
√

1 − 3t0
2t v2Estraight iden-

tified with the boosted static energy to a frame moving at velocity v, where Estraight =
R2

2πα′zH
(z−1

m − z−1
h ).

Hence the dispersion relation















E = γ(t)

√
λT0

2

[

z−1
m − z−1

h

]

+
1

v

dE

dt
∆x1(zh),

p = γ(t)

√
λT (τ)

2

√

3t0
2t

v
[

z−1
m − z−1

h

]

+
1

v

dp

dt
∆x1(zh).

(3.16)

∆x1(zh) is defined as

Λ(zh) =
1

zH
| ∆x1(zh)

v
|, (3.17)

with dE/dt = π1
t , dp/dt = −π1

x.

The square root appearing in the expression for p could potentially spoil the interpreta-

tion of these formulas as providing the energy and momentum for a quark moving at velocity

v through the plasma. Note however that going to the co-moving frame, (3.16) reads














Ẽ ≃ γ(ṽ)

√
λT (τ)

2

[

z−1
m − z−1

h

]

+
1

ṽ

dẼ

dτ
∆x1(zh),

p̃ = γ(ṽ)

√
λT (τ)

2
ṽ
[

z−1
m − z−1

h

]

+
1

ṽ

dp̃

dτ
∆x1(zh),

(3.18)

where ṽ = ∂X1

∂τ =
√

3t0
2t v is the speed of a particle moving with constant velocity in the

plasma co-moving frame, with the same trajectory as the heavy quark probe described

according to (3.8). Terms of order O(τ−4/3) have been discarded. This is legitimate given

the JP asymptotic condition and the background metric coefficients being actually leading

order contributions to an expansion in τ−2/3.

It is now straightforward to derive the drag coefficient:

dp̃

dτ
= −ηp̃, η =

π
√

λT 2(τ)

2M
, (3.19)

which displays the same form as in [22], with the proper-time dependence of the tempera-

ture in an expanding plasma now taken into account.

This marks a difference in the energy loss mechanism in QCD from the one in a N = 4

SYM plasma at strong coupling. In perturbative QCD the energy loss is dominated by

induced radiation of gluons. The transverse momentum of those gluons is high enough that

the coupling αs at this scale is weak, allowing for a perturbative calculation for a parton

energy loss:

∆E =
1

4
αsCRq̂

L−2

2
. (3.20)

L− stands for the path length of the parton in the plasma. q̂ keeps track of the nonpertur-

bative soft interactions between emitted gluons and the medium and between the emitting

parton and the plasma.
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While in QCD the average loss of energy (3.20) from a fast parton has at most a

logarithmic dependence on the latter’s momentum and is proportional to the square of its

path-length, (3.19) is linear in p.

As illustrated in previous works [4, 7, 21, 23], the mechanisms for momentum broad-

ening appear to differ at weak and strong coupling, if N = 4 provides any hint on QCD in

the latter regime. We now explore how the momentum broadening coefficients are modified

in an expanding plasma at strong coupling.

3.2 Fluctuating trailing string and momentum diffusion

This section is concerned with deriving the momentum broadening coefficients from fluc-

tuations of the trailing string (3.8). This was done in [4, 7, 17, 18] for the case of a static

medium. For a review of jet quenching and momentum broadening in perturbative QCD

and in AdS/CFT, the review [24] is particularly recommended.

Writing

X1(t, z) = X1
0 (t, z) + δξ1(t, z) X2(t, z) = δξ2(t, z) Y (t, z) = δy(t, z), (3.21)

with fluctuating terms in the transverse and velocity directions, and inserting in the Nambu-

Goto action after some algebra ultimately leads to the following expansion at quadratic

order of the action:

SNG = −R2/zH

2πα′

∫

dt dz

√

1 − 3t0
2t v2

z2
+

∫

dt dzPα∂αξ1

−1

2

∫

dt dzTαβ
δy ∂αδy∂βδy − 1

2

∫

dt dz
∑

i=1,2

Tαβ
ξi ∂αδξi∂βδξi, (3.22)

where

Pα = −R2/z2
H

2πα′

3t0
2t v

√

1 − 3t0
2t v2

(

zH/(z2(1 − z4))

1

)

, (3.23)

Tαβ
δy = −R2/z2

H

2πα′
4t2/9

√

1 − 3t0
2t v2







zH
z2

h

1−(1− 3t0
2t

v2)z4
i

(1−z4)2
3t0
2t

v2

1−z4

3t0
2t

v2

1−z4

h

z4−(1− 3t0
2t

v2)
i

zHz2






, (3.24)

and

Tαβ
ξ2 =

[

1 − 3t0
2t

v2

]

Tαβ
ξ1

= −R2/z2
H

2πα′
3t0/2t

√

1 − 3t0
2t v2







zH
z2

h

1−(1− 3t0
2t

v2)z4
i

(1−z4)2
3t0
2t

v2

1−z4

3t0
2t

v2

1−z4

h

z4−(1− 3t0
2t

v2)
i

zHz2






; (3.25)
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Making use of reparametrization-invariance on the world-sheet, these results translate into

the following expressions:

SNG = −
√

λ

2

∫

dτ dz

√
1 − ṽ2T (τ)

z2
+

∫

dτ dzP̃α∂αξ1

−1

2

∫

dτ dzT̃αβ
δy ∂αδy∂βδy − 1

2

∫

dτ dz
∑

i=1,2

T̃αβ
ξi ∂αδξi∂βδξi, (3.26)

with α, β running over z, τ and

P̃α = −π
√

λT 2(τ)

2

ṽ√
1 − ṽ2

(

1
πT (τ)(z2(1−z4))

1

)

, (3.27)

T̃αβ
δy = −R2/z2

H

2πα′
(τ0τ

2)
2

3√
1 − ṽ2





1
πT (τ)z2

[1−(1−ṽ2)z4]
(1−z4)2

ṽ2

1−z4

ṽ2

1−z4

πT (τ)
h

z4−(1− 3t0
2t

v2)
i

z2



 , (3.28)

and

T̃αβ
ξ2 =

[

1 − ṽ2
]

T̃αβ
ξ1

= −π
√

λT 2(τ)

2

1√
1 − ṽ2





1
πT (τ)z2

[1−(1−ṽ2)z4]
(1−z4)2

ṽ2

1−z4

ṽ2

1−z4

πT (τ)[z4−(1−ṽ2)]
z2



 . (3.29)

Recall that τ is related to t through t
t0

= 3
2( τ

τ0
)

2

3 . In the above, the temperature ap-

pears only through its local, proper-time dependent expression. Let us now show that the

momentum broadening coefficients are then formally the same as in [4, 18].

Indeed, if one uses the second set T̃αβ of tensor densities, proper time derivatives

of the temperature are discarded in the equations of motion, ∂αTαβ∂βφ = 0, given that

they imply sub-leading O(τ−4/3) contributions. Therefore, independent solutions to the

equations of motion look the same as in [4],1 with T0 → T (τ).

In z, τ coordinates the location zS of world-sheet horizon2 is zS = 4
√

1 − ṽ2.

We are interested in the form of the Kruskal diagram in the z, τ coordinates with the

JP asymptotic condition on the latter variable.

Keeping only the z, τ components, this reads ds2 = (RπT (τ))2/z2 ×
×
[

−fdτ2 + dz2/π2T (τ)2f
]

, i.e. ds2 ≃ (RπT (τ))2/z2
[

−fdτ2 + [d(z/πT (τ))
]2

/f ].

At this order of the JP expansion the Kruskal coordinates are found as follows.

The null condition leads to (πT (τ))2(dτ)2 = (dz)2

f(z)2
, hence

τ
2

3 = ±z∗ + C. (3.30)

1See also [7] where they are labelled ψret(ω, z) and ψadv(ω, z).
2A world-sheet horizon is generally determined from the zeroes of the polynomial factor appearing in

front of the second AdS-radial derivative in the equations of motion. They determine the regular singular

points of this equation. When z = zS the value of ∂zφ at z = zS is determined from the equation of motion.

This means that fluctuations of the string at z < zS are causally disconnected from those away from the

location of the world-sheet horizon.
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where C labels a constant c-number and

z∗ =
1

3πT0τ
1/3
0

[

arctan(z) +
1

2
log

(

1 + z

1 − z

)]

. (3.31)

Introducing ν+ = τ2/3 − z∗ and ν− = τ2/3 + z∗, the metric is written as

ds2 = −
(

3

2
πRT0τ

1/3
0

)2 f(z)

z2
dν−dν+. (3.32)

z and τ are given through the implicit equations



















τ =

(

ν− + ν+

2

)
3

2

,

arctan(z) +
1

2
log

(

1 + z

1 − z

)

=
3

2
πT0τ

1/3
0 (ν− − ν+).

(3.33)

It is then natural to introduce the variables U and V , the Kruskal coordinate for this

setting:

U = −e−3πT0τ
1/3

0
ν− , V = e3πT0τ

1/3

0
ν+ . (3.34)

z and τ are then defined implicitly in those coordinates as















−UV =
1 − z

1 + z
e−2 arctan(z),

−V

U
= e6πT (τ)τ = e4πT0t.

(3.35)

The Kruskal diagram is split into four quadrants by the curves U = 0 and V = 0. UV = 0

still yields z = 1 and τ is given by log(−V
U ) = 6πT (τ)τ , so that V = 0, resp. U = 0,

still corresponds to τ = −∞ or t = −∞, resp. +∞. This conclusion is supported by [25],

figure 1, where they show that the BF geometry is a regular black hole spacetime. The

apparent and event horizons were found at various orders in the JP metric and they tend

to a common slowly varying line in the z–τ plane when τ ≫ 1.

The trailing string solution (3.8) is cast in the form

X1
0 (t, z) = x1

0 +
v

2πT0
log(V ) +

v

πT0
arctan(z), (3.36)

which explicitly shows that the trailing string is regular at the horizon between the up-

per and the right quadrants. A state of the system is prepared at Re t = −∞, which

corresponds to the singularity at V = 0, is propagated along Im t = 0, and back along

Im t = −σ, for some constant σ in the Schwinger-Keldysh path.

This suggests that all the analysis exposed in [4, 7] is directly applicable to the current

problem, with the proviso that the world-sheet horizon in the t − z coordinates is now time-

dependent, zS = 4

√

1 − 3t0
2t v2. Indeed the equations of motion obtained from (3.23), (3.24)

and (3.25) are the same as those found in the above references, given that the additional
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time factors should be neglected at the order of the JP expansion one is dealing with. The

additional time-dependence of the location to the world-sheet horizon is accounted for by

noticing that it turns out to be subleading compared to the decorrelation time.

All in all, after going back to the Bjorken frame as was done at the end of section 2,

this yields

q̂ξ2(τ) = π
√

λT 3(τ)

√

γ(ṽ)

ṽ
q̂ξ1(τ) = π

√
λT 3(τ)

γ(ṽ)5/2

ṽ
γ(ṽ) = 1/

√

1 − ṽ2. (3.37)

This corresponds to a stochastic force in a Langevin equation satisfying

dp̃i

dτ
= Fi 〈Fi(τ1)Fj(τ2)〉 = δijKi(τ1, τ2), i, j = 1, 2 (3.38)

From q̂ = 〈p2〉/l — l, the path length travelled by the quark in the plasma proper frame,

being large enough that the memory short range correlations is not taken into account but

large enough that the quark has not departed significantly from its initial trajectory —

this gives

q̂i =
1

ṽ

∫

dτKi(τ, 0), (3.39)

as defined in, e.g. [4].

Note however that (3.37) bears no relation to jet-quenching. The longitudinal and

transverse parts do not match at finite momentum. The momentum broadening coefficients

have been written in this varnished form to suggest a similarity to the local jet-quenching

parameter appearing in perturbative QCD calculations with a high energy quark moving

in an expanding plasma.
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